
Mathematical Networks

Curtis Hu

July 2023

1 Shannon Entropy

H = −
∑

pilog(pi)

Some conditions:

• H must span for an entire sample space. So
∑

pi = 1.

• H is continuous

• As events become more equally likely → H becomes more maximized

H then measures a quantity of ”information” in an intuitive sense. In lay-
man’s terms, as the likelihood of events become more and more equal, we require
more ”information” to convey information. For example, if 2 events are equally
likely to happen, we require 1 bit to convey what actually happened. If only
one bit can happen in a sample space, then we require 0 bits.

More more formally, Shannon Entropy is the amount of information needed
to express a symbol of information based on the given sample space.

Intuitively, for a coin toss, you’d need 1 bit or 2 states to competeley convey
what happened.

H2 = −
∑

pilog2(pi)

1 = −1

2
log2(1/2)−

1

2
log2(1/2)

For a dice, you’d need 3 bits.

−log2(1/6) = 2.58 ≈ 3

The maximal amount of entropy is then:Hmax = log2(1/n) because when all
events are equally likely, there is most uncertainty.

1



2 Graph Theory

2.1 Storing Graphs:

• Adjacency Matrix (Nodes v. Nodes)

• Distance Matrix (Nodes v Nodes)

• Connectedness Matrix (Nodes v. Nodes)

• Incidence Matrix (Nodes v. Edges)

• Storing list of Nodes, list of Edges separately

Adjacency matrix is more commonly found in textbooks. Distance and con-
nectedness matrix are variations of this. Each column and row are

Storing lists of Nodes and lists of Edges.

2.2 Minimum Spanning Trees:

• Kruskal’s Algorithm (Start with PQ)

• Prim’s Algorithm (Start at random node)

2.2.1 Kruskal’s Algorithm

In layman’s terms, you put all the edges and their weights in a priority queue,
where the smallest-weighted edges is first. Pop off the smallest and connect the
two nodes. Keep popping off the smallest-weighted edge such that it does not
create a loop. When all the elements are connected, you’ve found a minimum
spanning tree.

2.2.2 Prim’s Algorithm

In layman’s terms, you start at a random node. Add all the possible edges.
Choose the smallest edge and connect with it. Now update all possible edges
again. Repeat, without creating cycles, until you have a spanning tree.

2.3 Connectedness:

Visually finding connectedness is easy, but using an adjacency matrix as its size
grows becomes hard.

2.3.1 One Computationally Hard Method:

Notice the pattern. A shows connectedness with nodes one arc away. A2 shows
connectedness with nodes two arcs away. A3 shows connectedness with nodes
three arcs away. There are a maximum of n−1 arcs between two nodes. Hence,
Y = A + A2 + A3 + ... + An−1 will show connectedness for the graph. Zero
indicates no connection.

2



2.3.2 Connectedness Algorithm:

• Initialize X as the adjacency matrix (non-directed graph). Set i = 1 and
c = 0

• Find Xij ̸= 0(j > i). Logically add row j to row i, column j to column i.
Delete row j and column j from X. If no j exists, go to step 3. Otherwise,
repeat step 1.

• Set c = c+1. Find k > i such that row k has not been deleted. If no such
k exists, then stop. The graph has c components. Otherwise, set i = k
and go to step 2.

In layman’s terms (try to get the general motion with you hands):

• Index the first layer for each nonzero. Logically AND outwards the rows
and columns that nonzero has indicated. Delete.

• Increase the counter for number of components. Go to next non-deleted
row in the sub matrix unless you can’t

2.4 Optimal Paths:

2.4.1 Dijksta’s Algorithm

Layman’s Method. Visual.

• Visit node.

• Add neighbor nodes that aren’t in visited nodes list into priority queue
with total weight from the start.

• Choose top from priority queue and add to visited nodes list. Visit this
node.

• Stop when you visit the target node.

Distance Matrix Method
The result will be a spanning tree so you can keep track of the tree in an

array parents.

• Assign a temporary label l(i) = ∞, except set l(s) = 0. Denote l(s) as
permanent label (meaning officially the shortest path to this node). Set
r = s.

• For each node i with a temporary label, redefine l(i) = min(l(p), l(p) +
d(p, i)) (where p is the node of where it came from.) Assign its parent as
p if l(i) > l(p)+d(p, i). Then find the node i with the smallest temporary
label, make the label permanent and set r = i. (This is officially the
shortest path to this node since taking the other nodes will yield a greater
weight)

• If node t has a temporary label, repeat step 2. Otherwise the value of t’s
permanent label is equal to the shortest path from s to t.

3



2.4.2 Further Explorations

• Ford’s Algorithm - compute shortest paths with negative weights

• Floyd’s Algorithm - compute all shortest paths at once

2.4.3 Pollack’s Algorithm

Determining the second shortest path. Really simple. Determine the shortest
path via Dijkstra’s. Eliminate one of the arcs and redetermine the shortest path
via Dijkstra’s. Repeat for each arc. Take note of the shortest path.

• Find the shortest path through the network. Number the arcs in the path
1 to m. Set k = 1, q = ∞

• Set the length of arc k = ∞ temporarily. Find the shortest path through
the modified network. I fthe length is less than q, set q equal to the length
of the path.

• If k = m, stop. Otherwise, set k = k + 1 and repeat step 2.

4


