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1 Relationships

V =
dU

dQ

I =
dQ

dt

P = IV =
dU

dt

V = IR

• 1V olt = 1Joule
1Coulomb

• 1Amp = 1Coulomb
1second

• 1Watt = 1Joule
1second

• 1Joule = 1Coulomb ∗ 1V olt

• 1Coulomb = excessordeficitof6.24 ∗ 1018e−

• 1Farad = 1Coulomb/1V olt

• Permitivity: 1Farad/1meter

1.1 In Depth Analysis of These Relationships

We can speculate that the motion of e− mostly chaotic due to atomic colli-
sions. When we introduce a voltage potential, we introduce a bias. In between
collisions, they accelerate in a direction. You can imagine a mitochondrial mem-
brane. The behavior of our ions are still chaotic, but the combination of the
electrostatic forces create a clear bias.

The formal definition of current dQ
dt through a given surface, such as a cross-

sectional area of a wire. Note: current is the flow of any charge. They can be
ions, electrons, or even neutral atoms. HyperText Current density

Believe it or not, pushing e− through material requires work. Removing
e− from an hydrogen atom requires work. Change in potential energy is work.

1

https://physics.info/electric-current/
https://en.wikiversity.org/wiki/Physics_equations/Current_and_current_density


1.2 Derivations: Charges 1 RELATIONSHIPS

Just like how two points away from Earth have a change in potential energy,
two nodes in a circuit can have a change in electrical potential energy.

Note that I = dQ
dt is solely the rate of change of e− across a cross-sectional

area. This is not analogous to ‘velocity’ or ‘width of a pipe.‘ You can have a
thin pipe with a lot of e− passing through, giving you a large current. You can
have a fat pipe with barely any e− passing through, giving you a small current.
You can also have a lot of e− passing through at a large cross-sectional area at
‘low velocity’ and still have a large current.

Q ∝ ×elementarycharge

Q ∝ number of e−

U = QV our voltage definition

U ∝ Q

U ∝ V

Note that U represents the electric potential energy. Just like gravity, U is
the energy stored in the electric field. Try to think of it as two charged particles
being attracted or repelled from one another, just like two objects in space (at
least the attracting part).

1.2 Derivations: Charges

Charles Augustin Coulomb experimentally noticed properties between charged
particles. These experimental relationships, he captured in what is known as
Coulomb’s Law.

Fe = k
q1q2
r2

k =
1

4πϵ0

F⃗e = k
q1q2

|r⃗1 − r⃗2|2
u⃗ Vector notation

u⃗ =
r⃗1 − r⃗2
|r⃗1 − r⃗2|

Fe = qE

Eq1 =
Fq1→q2

q2
= k

q1
|r⃗1 − r⃗2|2

r̂ Electric Field in respect to one reference particle

The Electric Field is the Coulomb force per unit charge. The Coulomb
force is the actual force field in the system. The electric field is the field for 1
Coulomb.
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1.3 Derivations: Electric Potential 1 RELATIONSHIPS

1.3 Derivations: Electric Potential

Coulomb’s law is similar to Newton’s Law of Gravitation. Note: that electro-
static forces depend on charge while gravitation depends on mass; gravitation
only attracts while electrostatic attracts and repels; a e− has both gravitational
force and electrostatic force, but the electrostatic force is way stronger for such
small particles.

Just like there is potential energy when two objects are held away from each
other in space, there is potential energy when two charges are held two points in
space. Assume one dimensional non-wire system. Assume conservative electric
field. Let there be two charged particles floating in vacuum on an axis, let r be
the distance in between:

∆U =

∫ r2

r1

F⃗e · d⃗r Analogous to gravitational potential energy

=

∫ r2

r1

k
q1q2
r2

dr cos 0

= kq1q2

(
−1

r

)r2

r1

= kq1q2

(
1

r1
− 1

r2

)
= −

[
kq1q2
r2

− kq1q2
r1

]
Vq1 = −∆U

q2
= kq1

(
1

r1
− 1

r2

)
Voltage is the integral of the electric field

=
−
∫
Eq1 dr

q2

∆V =
∆PE

q
(1)

Voltage is the potential energy per unit charge. So it is the PE in 1 Coulomb
(or other units). PE is just the potential energy within the system. Both
still grasp the idea of energy. Voltage is in J/C while PE is just in J. A car
battery and a flashlight battery may have the same the voltage, but not the
same potential energy.

Just as two objects in a viscous fluid attract slowly, two charged particles in
a resistive medium can attract at lower currents. Hence, V = IR
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1.4 Derivations: Current 1 RELATIONSHIPS

Under the Maxwell-Faraday Equation, we can assume our vector field is
conservative if the magnetic field remains constant over time.

∇× E⃗ =
∂B⃗

∂t

Note: Φ and Ve are interchangeable. Voltage is the line integral of the static
electric field. Let’s assume it is conservative, so any path gets us the same volt-
age difference. Equally, the electric field is the gradient of the voltage. This
means the electric field points ”downwards” toward lower voltages. Our de-
rived Maxwell equation shows that the divergence of the electric field is directly
related to the total charge density at that point.

Ve = −
∫
C

E⃗ · ds

E = −∇Ve

→ ∇ · E = −∇2Ve

→ ∇ · E =
ρ

ϵ0

1.4 Derivations: Current

Q is a unit of charge. Q of a group of e− is dependent on two things: strength
of the e− charge and the amount of e−.

One coulomb is hence 6.24× 1018 electrons.
The faraday unit of charge is elementary charge × one mole. AKA the charge

of one electron × one mole.
F = e×NA

F = 1.602× 10−19C × 6.022× 1024moles

Note that current is dependent on a few things: strength of charge, number
of these charged particles, drift speed, cross sectional area.

This is another common way to define current in terms of a wire. It is drift
speed × cross sectional area × average charge × discrete number of charged
particles

I = nqAv

This is the most broad and general way of writing current. Note: depending
on how you define your graph / normal vectors, you’d either get positive or
negative of the result. Note: dot product shows us how overlapped.

Recall: SA =
x

S

F (r⃗(u, v)||r⃗u × r⃗v||dudv

I =
{

S

J⃗ · d⃗S d⃗S = n̂dS
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2 RESISTORS

Current density is the amount of current while accounting for cross sectional
area. So only number of charged particles × charge of the particles × drift
velocity.

J =
I

A
= nqv

Charge Density is the amount of charge in a given space.

ρ =
Q

V

ρ

ϵ0
= ∇ · E⃗

J = ρv

=
Q

V

∆s

∆t

=
∆s

∆sV

Q∆s

∆t

=
1

V

∆Q

∆t
= I/A

There is the water-pipe model of current, where fluid mechanics translates over
to electrons. Here we find the ”mass continuity equation” in fluid mechanics.

I = JA

= ρvA

ρ1v1A1 = ρ2v2A2 Mass Continuity Equation

2 Resistors

All the e− collides with atoms in the material, causing atoms to vibrate, gener-
ating heat.

R = ρ
L

A

Notice: L → ∞, R → ∞
A → ∞, R → 0
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2.1 Resistor Simplifications Derivation 2 RESISTORS

Figure 1: Imagine the electrons pushing through the material

2.1 Resistor Simplifications Derivation

b

R1 R2

a

Itest

Figure 2: The ”black box” are the two resistors. Since there are no independent
sources, we plug in a current source because when V or I is zero, we do not
extract the IV relationship.

Vtest = VR1
+ VR2

(KV L)

Vtest = iR1
R1 + iR2

R2 Itest = iR1
= iR2

Vtest = Itest(R1 +R2)

Rth =
Itest(R1 +R2)

Itest
Rth =

Vtest

Itest
Rth = R1 +R2
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3 RESISTOR TOUCHSCREEN

a

R1

b

R2 −
+ Vtest

Figure 3: We plug in a voltage source because when V or I is zero, we do not
extract the IV relationship.

Itest = iR1
+ iR2

Itest =
VR1

R1
+

VR2

R2
Vtest = VR1 = VR2

Itest = Vtest(
1

R1
+

1

R2
)

Rth = Vtest
1

Vtest(
1
R1

+ 1
R2

)

Rth =
1

1
R1

+ 1
R2

=
R1R2

R1 +R2

Note that the equivalent resistance is lower than the individual resistors. This
makes sense as we add more and more resistors in parallel, we lower the overall
resistance to current.

3 Resistor Touchscreen

−
+

Figure 4: You are used to seeing this where the top and bottom are nodes
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3 RESISTOR TOUCHSCREEN

Let our resistor touchscreen be two resistor meshes, which are separate resis-
tive material that can bend to touch each other. In figure 6, the bottom mesh
has current flowing through a bunch of voltage dividers. The top mesh probes
the points on the bottom mesh. The top mesh is connected to our voltmeter.
Since voltmeter is an open circuit, no current flows through and it only tells us
the potential difference of our probed node in respect to ground.

When a touch is sensed (by alternating between meshes to check for nonzero
potential differences), our Launchpad reads the voltmeter and then makes the
bottom mesh the ”voltmeter” and the top mesh circuit of voltage divider. Hence,
we attain a second potential difference value.

Note: another possibility is to alternate the voltage source on the bottom
mesh vertically and horizontally and have the top mesh only to measure voltage.

Figure 5: Resistor touchscreen layout

Figure 6: Note: the ‘wire’ touching the two meshes would technically be at the
same point. The diagram above shows that it doesn’t matter where you probe
with the top mesh, you’d get the same reading.

How does this new configuration, without a solid node on the top or bottom,
get us an unique coordinate?
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3 RESISTOR TOUCHSCREEN

3.3V

z h z

y y y

x
g

x

3.3V

a
b c

d
b

e

a
b c

y = 3.3V
R

R+R
y = y − 0

= 3.3V
R+R

R+R+R+R

= 1.65V

x = (x− y) + y y′ = g − y = 3.3V
R

R+R

= y′
R

R+R
+ y

= 2.475V

z = y
R

R+R

= .825V

y = b

x = a

z = c

There are repeated values in our diagram such as x, y, z. By flipping the circuit’s
voltage source, we get unique positions from the voltage differences.

• (x, a)

• (y, d)

• (z, a)

• (g, b)

• (y, b)

• (h, b)

• (x, c)

• (y, e)

• (z, c)
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4 CAPACITORS

4 Capacitors

Q = CV (2)

Capacitance, the amount it can hold, is usually constant in our circuits. Q is
the amount of charge on one plate (it would be zero if it were on two). Voltage
is work that can shove electrons onto a plate.

dQ

dt
= C

dV

dt

I = C
dV

dt
(3)

Current has a direct relationship with the rate of change of voltage. This
implies that current on the wire above only exists when voltage across the
capacitor is changing.

C = ϵ
A

d
(4)

Capacitance is determined by physical properties. For parallel-plated
capacitors, we model the relationship in (4). Epsilon is the permittivity. Area
is the area of overlap. Note: even if you have a thick upper plate, what only
matters is the surface area (where the e− will lie.)

A → ∞, C → ∞
d → ∞, C → 0

Polarized Caps increase the capacitance through a polarized dielectric. Imag-
ine two plates separated by a vacuum (has permittivity of ϵ0). Imagine two
plates separated by a polarized substance like water. Polarized molecules have
an unequal distribution of charge. Hence, they will begin to orient themselves.
This orientation allows more charge to flow on the plates as they are pulled in
more by the polarized molecules.
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4.1 More Derivations for the Curious Minded 4 CAPACITORS

4.1 More Derivations for the Curious Minded

Because Electric field is constant throughout the space between the plates as
vectors cancel out.

E × d = V

More specifically:

VAB = V (rB)− V (rA)

= −
∫ rB

0

Edr − (−
∫ rA

0

Edr)

= −
∫ rB

rA

Edr
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4.2 Capacitor Simplifications Derivations 4 CAPACITORS

The electric potential energy stored between two plates are U = CV 2

2 .

dE = VcdQ

dQ = CdVc∫ Eeq

0

=

∫ Veq

0

Vc(C)dVc

Eeq =
1

2
CV 2

eq

4.2 Capacitor Simplifications Derivations

Ceq =
Itest
dVtest

dt

In parallel:

VtestC1

i1

C2

i2
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4.2 Capacitor Simplifications Derivations 4 CAPACITORS

Ic1 = C1
dVc1

dt

Ic2 = C2
dVc2

dt
Itest = Ic1 + Ic2

Itest = (C1 + C2)
dVtest

dt
Ceq = C1 + C2

In series:

Itest

u1

C1

i1

u2

C2

i2
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4.3 Capacitor Touchscreen 4 CAPACITORS

Itest = Ic1 = Ic2

Ic1 = C1
Vc1

dt
= C1

d(u1 − u2)

dt

Ic2 = C2
Vc2

dt
= C2

du2

dt

→ Ic2
C2

=
du2

dt
Voltage Defs

Ic1 = C1
du1

dt
− C1

Ic2
C2

Itest = C1
dVtest

dt
− C1

C2
Itest

(1 +
C1

C2
)Itest = C1

dVtest

dt

Itest =
C1

1 + C1

C2

dVtest

dt
Itest = Ceq

dVtest

dt

Ceq =
C1C2

C1 + C2

Notice that parallel operator means that the equivalent capacitance is lower
than either of the individual capacitors. This makes intuitive sense because you
basically made the capacitors less effective by widening the distance.

Note that this forms a capacitor based voltage divider, where du2

dt = C1

C1+C2

du1

dt .

4.3 Capacitor Touchscreen

finger

top plate

bottom plate

C0 C∆

When your finger touches, you create C∆, which means the overall capacitance
from top plate to bottom plate increases. Now let’s add that with with the
following circuit.
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4.3 Capacitor Touchscreen 4 CAPACITORS

Figure 7: We use a square wave current source

We can use the equation V = I
C (t − t0) + V (t0) because the current is

constant for discrete periods. Notice that when we increase the capacitance of
our capacitor in 7, we will lower C in our linear equation. Hence our V(t) will
have a flatter slope. We can take advantage of this flatter slop to detect touch.

The point in between the highest point of no-touch and touch give us a good
boundary. We can create an if-then statement via a comparator to check when
it is above our boundary or below. We get the resulting square wave when our
V(t) passes the boundary. Hence we know there is no touch.
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4.4 Charge Sharing Algorithm 4 CAPACITORS

Figure 8: The red line is our Vref or boundary. The green line is our comparator
detecting our signal passing Vref

4.4 Charge Sharing Algorithm

QΦ1
u = QΦ2

u (5)

1. Label the voltages across all the capacitors. Show the polarity of the
capacitors. Just remain consistent throughtout the phases.

2. Draw the equivalent phases circuits

3. Identify floating nodes. These are nodes in which no charge can escape.
For example, a node that is only connected to a plate(s).

4. Find QΦ1
u . For each floating node in 2nd phase, we find the total charge of

this node by examining the capacitor plates of steady state in the previous
phase. Careful: The plate marked with the “−” sign will have Q = −CVC

and the plate marked with the “+” sign. Also note that you are fundamen-
tally finding the amount of storage the capacitor can store. (Remember
to use the voltage difference across the capacitor)

5. Find QΦ2
u . Find the total charge of the floating nodes in the steady state

of phase 2. (Remember to use the voltage difference across the capacitor)

6. Use the conservation of floating node charges to find node voltages, etc.

4.5 Capacitor Derivations

Assuming we start at a completely discharged capacitor and add charge up
to any point int time. The potential energy at that point (in respect to our

16



4.5 Capacitor Derivations 4 CAPACITORS

discharged state) is derived below. U and V can be equilibrium values.

dU = VCdQ To store an additional dQ charge

→ dQ = CdVC Q = CV∫ U

0

dU = C

∫ V

0

VCdVC

U =
1

2
CV 2

Figure 9: Charging a capacitor

−
+Vs

R

C

Vs − Vcap − VR = 0 KVL

Vs −
Q

C
− IRR = 0 With resistor, we get the FODE

→ −R
dQ

dt
=

Q− CVs

C
Current is constant throughout

1

Q− CVs
dQ = − 1

RC
dt∫ Q(t)

0

1

Q− CVs
dQ =

∫ t

0

− 1

RC
dt

ln
CVs −Q(t)

CVs
= − t

RC

Q(t) = CVs(1− e−t/RC)
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4.6 Misc. 4 CAPACITORS

Figure 10: Discharging a capacitor

C

Is

R

IR

Vcap − VR = 0

Q

C
− IRR = 0

Q

C
+R

dQ

dt
= 0

dQ

Q
= − dt

RC∫ Q(t)

Q(0)

dQ

Q
= −

∫ t

0

dt

RC

ln
Q(t)

Q(0)
= − t

RC

Q(t) = Q(0)e−t/RC

4.6 Misc.

Z = R+ jXc

Impedance is all about resistance to AC signals. Note that it includes both
resistance and reactance. For example, a resistor, inductor, and capacitor can
affect the AC signal in different ways.

XC =
1

jωC

XL = jωL

• Smoothing caps smooth out noise in signal (Ex: rectifier)

• Coupling caps rid of low frequency. Basically, only allows AC signals and
blocks out DC.

• Bypass caps smooth noise in our DC voltage source.
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5 OP AMPS

5 Op Amps

−

+U+

U−

Uout

VDD

VSS

Uout =


Vdd

A(U+ − U−) +
Vdd+Vss

2

Vss

Sometimes circuit analysis requires us to use a different model. Note that
U+ and U− are open circuits, hence no current will flow. We only care about
the change in voltage.

U−

U+

Uout

−
+

A(U+ − U−)

−
+ VDD+VSS

2

5.0.1 Comparators

Comparators capture the if-then logic of our signals. Basically, if Vin > Vref

give 3.3V else 0V, etc.
We can do so by setting amplification super high and use a Vref to compare

to. So if U+ is just slightly higher than Vref we hit the upper rail. If slightly
lower, we hit the lower rail.
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5.1 Negative Feedback 5 OP AMPS

−

+U+

Vref

Uout

Vdd

Vss

5.0.2 Buffers

Buffers allow use to create modular design of electronics. It can separate our
circuit without having to worry about loading (connecting low impedence to
high impedence, etc).

Note that Vin = Vout and so the voltage signal is preserved. We’ve only
changed the current.

5.0.3 Summing Amplifier

5.1 Negative Feedback

You can think of negative feedback as though balancing an umbrella on our
hand. You apply a counteracting force.
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5.1 Negative Feedback 5 OP AMPS

For simplicity, imagine our input is constant. At each discrete time step,
we will apply a correcting force. In this case, each time you loop around you’ll
apply a correction.

Serr = Sin − Sfb

Sout = A ∗ Serr

Sfb = f ∗ Sout

With some algebraic manipulations, we get:

Sout

Sin
=

A

1 +Af

Sout

Sin
=

1

f
as A → ∞

This means that for ideal op amps, we control the gain with the f block.
It is worth noting that Voltage Gain (Vout

Vin
) and A are different. ‘A’ is the

device’s inherent amplification factor, which is fixed. ‘Av’ is the gain, which is
not fixed.

The f block is reponsible for changing voltage. Often times, f block is just
passive components, so our vfb be either the output voltage or less. In our
equations: f ≤ 1 or Vfb ≤ Vout. Then ‘A’ is just the maximal gain. We can tune
down the amplification, going down from the maximal amount of amplification,
via negative feedback.
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5.1 Negative Feedback 5 OP AMPS

Figure 11: Generic Negative Feedback for an Ideal Op Amp

We know the following:

Verr = Vin − Vfb

Vout = AVerr

Vfb =
R2

R1 +R2
Vout

So we can derive the following:

Vout = A(Vin − Vfb)

Vout = A(Vin − fVout)

Vout(1 +Af) = AVin

Av =
Vout

Vin
=

A

1 +Af

f =
R1 +R2

R2
= 1 +

R1

R2
as A → ∞

22



5.2 Golden Rules 5 OP AMPS

So we can derive the following:

Vout = AVerr

Verr =
1

A

A

1 +Af
Vin

Verr =
Vin

1 +Af

Verr = 0 as A → ∞
U+ = U−

5.2 Golden Rules

1. I+ = I− = 0 for all op amps

2. U+ = U− only for NF, A → ∞

The inputs on an op amp are open circuits, so we know no current goes
through. Voltage can change though.

For intuition about why GR2 is true, imagine an unity buffer op amp with
an amplification factor of 106 and VDD = −VSS . Let’s say that Vin = U+ = 5V .
We know that Vout = U−. We know that A(U+ −U−) so 106(5− Vout) = Vout.
In order for this to be true, Vout = 4.999995V

5.3 Testing Negative Feedback

1. Zero out all independent sources. Replace current sources with open cir-
cuits and voltage sources with wires. So Vin and Vout becomes connected
to ground (usually).

2. Wiggle the output and check the loop. Increase the voltage of output
slightly by making Vout an open circuit. Trace backwards. How does Verr

change? (This is U+ − U−) Remember that all our voltage signals are
relative to ground. If the Verr less, then we are in negative feedback. If
the expression is greater, we are in positive feedback.

Short Cut:

• GR2: U+ = U− find node potential relationships.

• KCL write KCL equations for U+ and U−. Write in terms of node po-
tentials. Cancel via GR1.
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5.4 Inverting Op Amp 5 OP AMPS

5.4 Inverting Op Amp

Iin = If KCL and GR1

U+ = U− = 0 GR2 (NF and ideal)

Iin =
Vin − U−

Rin

If =
U− − Vout

Rf

Vin

Rin
= −Vout

Rf

Av = − Rf

Rin

Note that the gain inverts the signal. For actual higher gain, Rin ≤ Rf .

5.5 Buffer Op Amp

−
+ Rlight

Figure 12: Notice that changing our pot, changes the voltage that our load gets.
If we had a speaker or a lightbulb, this would cause problems.
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5.5 Buffer Op Amp 5 OP AMPS

We can prevent loading of the battery by introducing an unity buffer. Loading
is when resistor load affects previous parts of the circuit.

−

+U+

U−

Rlight

−
+

Figure 13: Now, changing our potentiometer doesn’t affect the voltage over the
light. Voltage signal is preserved. Impedance can be ignored.
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