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High Energy Physics (HEP) simulations, such as those generated by / L /\/\/\ /\/\y\/\ 2nd Particle 7
GEANT4 simulation toolkit, play a pivotal role in understanding particle >/ . / oo
Interactions and predicting experimental outcomes. Traditional Monte- AN A S Within the 100,000 events &
Carlo methods are computationally expensive and slow, prompting the o polo) ) ) generated by the CNF £ oo
exploration of newer technigues such as deep generative models. This Incoming particles kinematics are used to predict leading model, we examine the
project investigates the usage of Conditional Normalizing Flows particles final state kinematics (Energy, px, py,pz)- This final predictions of the density i | , | | |
(CNFs) as a deep learning model for modeling hadronic interactions. state kinematics Is subtracted from the Incoming particle distribution for the 2 o mpacetmaien :,
We propose a recursive normalizing flow to simulate a proton kinematics to find the remaining 4-momenta Iin the system. particle in the event. 7
interacting with carbon material using the GEANT4 simulated data. This remaining 4-momenta Is recursively fed back into the s
This work shows a step towards building a fully differentiable and data- CNF model to find the 2" particle final state kinematics. 5
driven simulation model for hadronic interactions for High Energy and In addition, we use the Adam optimizer with learning rate at Fig 4: Predictions for the p,, and p, L
Nuclear Physics. 1073 to 10~%and with polynomial decay. momentums density distributions
overlaying the target distribution for

the 2nd partide In the event 0 T 15000 —20000 Y 20000 40000
Res u | tS 2-th Particle p, (MeV)

Fig 5: Predictions for the energy and
. . —— S a p, distributions overlaying the target
Leadin O Particle 3 av _ distributions for the 29 particle in
event.
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The dataset is the simulated result of a 31 GeV incoming proton (p™)
colliding with a stational carbon material, which is produced by the
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The CNF model trains and
produces particle kinematics
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The model predicts the 4-
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nt ret rgs a cascade of garticles and thei(\;J Fesultin kinematié:s dataset. The epoch with the | 1 the 2°¢ particle very well.
eve u p g " |OW€St WaSSEFSteIn DIStanCe 0.0 40000 20000 {jr?ﬂpoanrticlep::{{;f;{:‘] 0 10000 T o d Id . I
i N i _ was used {0 generate 00075 2000 4000 6000 8000 10000 ralnlng ana vallgation I0ss
he total dataset is 4 Million events, with 10% used as the testing and 100.000 ever?ts for eeding article Eneray (MeV) | - S| converge together after 1200
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validation dataset respeptlvely. _The numb_er of fln_al state particles ranges comparison with the GEANT4
so the results were previously filtered for interactions where the leading

two particles were +m~ in any order toolkit generated data In
P o 4 | Figure 2 and 3.

e
=

epochs with batch size of 16384.
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Our model is a masked autoregressive flow which combines normalizing Fig 2: Predictions for the py, andp, =~ 2
f d f : f f A chai £ biiector r invertibl momentum density distributions overlaying .| g | | | | | S ..
ows and autoregressive estimation. A chain of bijectors, or invertible the target distributions for the first particle L B s
functions, alter a normal distribution p,(z,) to achieve the target generated from event (leading particle) 5 .
. . . . . . . .. Leading Particle p, (MeV) 141 . n — -
distribution p, (z;). The densities are one dimensional conditional - T In addition, we see computational 3
distributions: p(z, ..., z,) = [1I'p(z|zi_1, ..., Zo). Our model uses 20 J = performance increases. GEANT4 s .
bijectors whose invertible function is determined by the Mask 5 o0 ;'9 jlsi’rrliiltclgr?gz \tg:lghyel :girrlgeyt ;rrgit takes 140 _seconds to generate 1 M =
Autoencoder for DenSity Estimation (MADE) bIOCk, which Is trained. %0-15 - dicstributions for the first particle events while CNF takes 60 seconds 0 200 400 Eﬁggh 800 1000 1200
8 410l generated from the event (leading for 1 M events g
particle).
os S| o8 o L Conclusion
ﬁﬂS 505 : —2000 0 Egggmg Pariiﬂgi py{M;{iﬂﬂ 8000 10000 The CNF model pred|CtS 4_
2 : —-.] Mmomenta and particle types This work shows promise towards using conditional normalizing flows
* | Torthe leading particle very for simulating hadronic interactions. From the results, we’'ve captured
) - well. The predicted density the conditional dependence for the first two particles of the event
N | N | | 5 distribution (blue) matches reasonably well. However more work will be needed for capturing
T tesangparice T T D 00T : the target density distribution lower-energy interactions, different interaction modes and other
Fig 1: Predicts the particle types very closely. These particle types correlate - of the dataset (black) closely. relevant predictions such as particle counts and particle type
exactly to the m*m~mode we expect. Within simple cases such as this, we J predictions.
see accurate performance. "TTTS 5000 mf}ggdmg 15600 ] b0 astoo oo
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