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6 CHAPTER 1. SATIFYING

1.1 Infinite Square Roots

Find the value of: √√√√√1−

√√√√17

16
−

√
1−

√
17

16
−

√
1− ... (1.1)

Assume, when taking the limit, that deep within the nested square roots we
choose to begin with a “1”

1.1.1 Solution

We can do a substitution for U

U =

√√√√√1−

√√√√17

16
−

√
1−

√
17

16
−
√
1− ...

U =

√
1−

√
17

16
− U Using definition above

0 = U4 − 2U2 + U − 1

16
Algebraic simplification

So the solution must be one of the four options. Off the bat, we can eliminate
two of these answers. U ≈ 1.05 doesn’t make sense since it’s the form

√
1− (...)

and the fact the (...) is positive implies that U < 1. Secondly, U ≈ −1.62
doesn’t make sense as it would imply that

√
(...) results in a negative number.

(These are solution to the expression in polynomial form, but in our original
“infinite square roots” expression it doesn’t make sense)
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So we’ve eliminated two options and we have U = 1/2 and U ≈ 0.073. The
solution 1/2 is more stable. We can see why by first defining a new function:

f(x) =

√
1−

√
17

16
− x

The problem stated that deeply nested in the square roots, we’d begin with a
one. For 0.73... < x0 ≤ 17/16, if I keep applying f (for example, f(f(f(f(x0))))
etc), the result would converge to 1/2. So for our problem, repeated application
of f on x0 = 1 will result in ≈ 1/2. As we keep applying the function to one,
we get 1/2. Hence, x = 1/2.

√√√√√1−

√√√√17

16
−

√
1−

√
17

16
−

√
1− ... =

1

2
(1.2)

Reference: David Morin, Co-Director of Undergraduate Studies, Senior Lec-
turer on Physics (Harvard). https://www.physics.harvard.edu/files/sol78.pdf

https://www.physics.harvard.edu/files/sol78.pdf
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10 CHAPTER 2. CURIOSITY

2.1 Deriving the Normal Distribution

The normal distribution probability density function is:

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 (2.1)

How is this derived? And why on Earth is π in this function?

Figure 2.1: We’ll try to turn the function on the left into the function on the
right

Let’s first take a step back and examine f(x) = e−x2

which has the bell
shaped curve that we want. Somehow, this particular shape tends to describe
various phenomena in nature, so we use it. Let’s bend this function to satisfy
some properties.

1. Satisfying the inflection property. The normal distribution has the
special property that the inflection points occur at x = ±σ when µ = 0.
Let f(x) = e−x2/k. Find out what k needs to be in order for the inflection
points to occur at ±σ.

2. Solve the Gaussian Integral. The Gaussian Integral is a variation of
our probability density function, so solving this easier Gaussian Integral
gives a method to solve the PDF. I =

∫∞
−∞ e−x2

dx. What is I? (Hint:

note that this integral
∫
e−x2

dx famously has no elementary function as
a solution. However, I · I is a much easier integral to solve for in terms of
x and y and converting to polar.)

3. Satisfying summing to one property.
∫∞
−∞ f(x)dx = 1 property as a

property of a probability distribution. Now combine parts 1) and 2) by

solving for I ′ =
∫∞
−∞ e−x2/kdx using the same steps in 2) except substitute

what you got in 1) for k. By finding I ′, we can satisfy the summing to
one property.

2.1.1 Solution

Inflections Property

We want the inflection points to occur at x = ±σ assuming µ = 0.
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Figure 2.2: Let’s assume µ = 0

Inflection points occur when f ′′(x) = 0. Let’s find f ′′(x) first.

f(x) = e−x2/k

f ′(x) = −2x

k
e−x2/k

f ′′(x) = −2

k
e−x2/k +

4x2

k2
e−x2/k

Now we can set f ′′(x) = 0:

0 = −2

k
e−x2/k +

4x2

k2
e−x2/k

2

k
e−x2/k =

4x2

k2
e−x2/k

1 =
2x2

k√
k

2
= x at the inflection point√

k

2
= ±σ inflection points occur at x = ±σ

k = 2σ2

So now we have that f(x) = e−x2/(2σ2), where inflections for this occur at
x = ±σ.

Solving the Gaussian Integral

I =

∫ ∞

−∞
e−r2dr (2.2)

This integral
∫
e−x2

famously has a non-elementary solution. If you put it
directly into WolframAlpha, you get an error function.
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However
∫∞
−∞ e−r2dr contains a neat solution. Instead let’s solve for I · I:

I · I =

∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2

dy

=

∫ ∞

−∞

∫ ∞

−∞
e−x2

e−y2

dxdy

=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy

This is particularly helpful because we can interpret this as a rotation around
the z axis where x2 + y2 = r2 and r is the distance from the origin.

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy =

∫ ∞

0

∫ 2π

0

e−r2rdθdr

=

∫ ∞

0

2πe−r2rdr

= π

∫ ∞

0

e−udu u = r2, du = 2rdr

= −π
(
e−u

)∞
0

= −π (0− 1)

= π

This means that

I · I = π

I =
√
π



2.1. DERIVING THE NORMAL DISTRIBUTION 13

Sums to one property

Let’s redo the Gaussian integral using f(u) = e−u2/2σ2

I ′ · I ′ =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2σ2

dxdy

=

∫ ∞

0

∫ 2π

0

e−r2/2σ2

rdθdr

=

∫ ∞

0

2πe−r2/2σ2

rdr

= 2πσ2

∫ ∞

0

e−r2/2σ2 r

σ2
dr u = r2/2σ2, du =

r

σ2
dr

= 2πσ2

∫ ∞

0

e−udu

= −2πσ2
(
e−u

)∞
0

= −2πσ2 (0− 1)

= 2πσ2

Hence:

I ′ · I ′ = 2πσ2

I ′ = σ
√
2π

But we want the integral to sum to one. Multiplying by 1
σ
√
2π

solves this

problem. f(x) = 1
σ
√
2π

e−x2/2σ2

solves this problem.

∫ ∞

−∞

1

σ
√
2π

e−x2/(2σ2)dx = 1 (2.3)

Final Expression

f(x) =
1

σ
√
2π

e−x2/(2σ2) (2.4)

Adding µ translates the bell curve among the x axis.

References

Thank you Vedant Jhawar (UC Berkeley Math and CS) for proofreading. The
solution was mostly inspired by a vcubingx / 3b1b video. https://youtu.be/dqvLDhkg00.
Some parts were derived from first principles.

https://youtu.be/d_qvLDhkg00
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16 CHAPTER 3. NOVELTY

3.1 Does eπ < πe?

Simple question. Without a calculator, show whether

eπ < πe? (3.1)

3.1.1 Solution

One simple solution

xy ? yx

ln(xy) ? ln(yx)

y ln(x) ? x ln(y)

ln(x)

x
?

ln(y)

y

For the function f(x) = ln(x)/x, we can find that there exists a global
maximum at x = e.

f(x) =
ln(x)

x
df

dx
=

1− ln(x)

x2

df

dx
|x=e = 0

d2f

dx2
=

−3 + 2 ln(x)

x3

d2f

dx2
|x=e < 0

Because of the global maximum,

ln(e)

e
>

ln(π)

π
(3.2)

Hence the solution is:

eπ > πe (3.3)
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Another Solution

xy ? yx

ln(x)

x
?

ln(y)

y
Look above for steps

ln(x)

x
− ln(y)

y
? 0∫ e

π

1− lnu

u2
du ? 0 x = e, y = π

−
∫ π

e

1− lnu

u2
du ? 0∫ π

e

lnu− 1

u2
du ? 0 Integrand > 0 within (e, π) and strictly increasing∫ π

e

lnu− 1

u2
du > 0

eπ > πe

Reference: Montana State University

https://www.physics.montana.edu/avorontsov/teaching/problemoftheweek/documents/problem_Math012.pdf
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4.1 Coupon Collector’s Problem

There are 5 possible coupons. Everyday, you are given a random coupon. How
many days, on average, would you need to collect all 5 coupons?

Can you generalize your answer for N coupons?

4.1.1 Solution

The total number of days to collect all 5 coupons is the number of days it takes
to collect the first unique coupon plus the number of days it takes to collect the
second unique coupon ...

Xtot = X1 +X2 +X3 +X4 +X5

These follow a Geometric probability distribution. More specifically X1 ∼
Geom(1), X2 ∼ Geom(4/5), X3 ∼ Geom(3/5)... What does this even mean? It
means the value for Xi are scattered among probabilities.

Figure 4.1: Note the “days” here represent the value for X2 not Xtot. As you
can see, the value are scattered among probabilities

As seen in the figure above, X2 is scattered among probabilities. For X2 to
be 1 the probability is 4/5. For X2 to be 2 the probability is 1

5
4
5 . More formally,

P (Xi = d) = (1− p)d−1p where d is the number of days.
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What is essential to know for this problem is that for geometric distribu-
tions, the expected value is the reciprocal of the probability that defined the
distribution. The proof can be found in references (cs70 notes).

X ∼ Geom(p) ⇒ E[X] = 1/p

Using the fact that they all follow Geometric Distributions and the rule above
for the expectation of Geometric Distributions, we can solve our problem.

E[Xtot] = E[X1] + E[X2] + E[X3] + E[X4] + E[X5] Rules for expected value

E[Xtot] = 1 +
5

4
+

5

3
+

5

2
+ 5 Using X ∼ Geom(p) ⇒ E[X] = 1/p rule

E[Xtot] = 5(1 +
1

2
+

1

3
+

1

4
+

1

5
) Simplify

E[Xtot] ≈ 11.41 days

More generally:

E[Xtotal] = N · (1 + 1

2
+

1

3
+

1

4
+ ...+

1

N
) = N ·

N∑
n=1

1

n

References

• https://funnyscar.com/writings/coupon-collectors

• CS70 https://www.eecs70.org/assets/pdf/notes/n19.pdf

https://funnyscar.com/writings/coupon-collectors
https://www.eecs70.org/assets/pdf/notes/n19.pdf
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4.2 Brachistochrone Problem

Given two points, A and B in a vertical plane, what is the curve traced out by a
point acted on only by gravity, which starts at A and reaches B in the shortest
time. (exclude friction)

Figure 4.2: What is the fastest path for a frictionless ball?

4.2.1 Solution

There are actually many many solutions to this over the years. Johann Bernoulli
posed this problem to the great mathematicians of the time. I’m going to use
Bernoulli’s argument, which is perhaps the simplest.

4.2.2 Bernoulli’s Argument

By Fermat’s Principle, light follows the path of least time between two points.
Bernoulli used this idea to find the path of light in a medium such that the speed
increases following a constant acceleration. Similarly, in our original problem,
our ball is gaining speed under constant gravitational acceleration, and we want
the path of least time.

Imagine we have a substance such that the refractive index uniformly gets
smaller as we increase depth. Mimics the constant acceleration of the ball.



4.2. BRACHISTOCHRONE PROBLEM 23

We can start with Snell’s Law. nisinθi = nfsinθf

nisinθi = n1sinθ1 = ... = nfsinθf Snell’s Law for all the layers

For an arbitrary slice, the nsinθ term as a whole will be equal to the last
slice’s term.

c

v
sinθ =

csin(π/2)

vm
=

c

vm
last slice where θ = π/2 and speed is highest

sinθ

v
=

1

vm
where vm is a constant

sinθ

v
=

1

v

dx

ds
using the relationship sinθ =

dx

ds
1

v

dx

ds
=

1

vm
Relationships defined above

(vmdx)2 = (vds)2 Rearranging

v2mdx2 = v2(dx2 + dy2) because ds2 = dx2 + dy2

dx =
vdy√
v2m − v2

Rearranging

Due to conservation of energy: 1
2mv2 = mgy ⇒ v =

√
2gy. Since no energy

is lost from friction and potential energy is directly translated to kinetic energy,
velocity directly relates to the height traveled. The path will soon bend until it
is completely horizontal, where it would have reached a height of D.
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dx =

√
2gy√

2gD − 2gy
dy =

√
y

D − y
dy vm =

√
2gD, v =

√
2gy(

dy

dx

)2

=
D − y

y
This is the differential equation of a cycloid where 2r = D

References

• 3b1b

• Wikipedia page

https://youtu.be/Cld0p3a43fU
https://en.wikipedia.org/wiki/Brachistochrone_curve
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Bad

Too complicated, bad bulky solution, more pain than pleasure.
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